机械振动-4

第四章
二阶非齐次常系数线性微分方程:
$m \frac{d^2 x}{dt^2} + c \frac{dx}{dt} + ky = f(t)$
-
非齐次微分通解 $\Rightarrow y(t)$
-
非齐次微分特解 $\Rightarrow y_*(t)$
$y = y_*(t) + y_h(t)$
二阶非齐次常系数线性微分方程组 (多自由度系统):
- 拉普拉斯变换 (瞬态振动和稳态振动)
$mL{\ddot{x}(t)} + cL{\dot{x}(t)} + kL{x(t)} = L{F(t)}$
简谐激励下的强迫振动
振动微分方程的解:
$m \ddot{x} + c \dot{x} + kx = F_0 e^{i \omega t}$ , $\tilde{\omega} = \frac{\omega}{\omega_n}$
- $x_1(t) = Re^{-j \omega t} \cos(\omega_d t - \varphi)$ (瞬态解)
$\xi < 1$ - $x_2(t) = x_0 \sin (\omega t - \varphi)$ (稳态解)
$m \ddot{x} + c \dot{x} + kx = F_0 \sin \omega t$
$x_2(t) = \frac{F_0}{k} \sin(\omega t - \varphi)$
相关参数:
- 放大因子: $\mu = \frac{1}{\sqrt{(1 - \tilde{\omega}^2)^2 + (2 \xi \tilde{\omega})^2}}$
- 静变形: $B = \frac{F_0}{k}$
- 相位差: $\varphi = \arctan \frac{2 \xi \tilde{\omega}}{1 - \tilde{\omega}^2}$
全响应:
$x(t) = Re^{-j \omega t} \cos(\omega_d t - \varphi) + \frac{F_0}{k \sqrt{(1-\tilde{\omega}^2)^2 + (2\xi \tilde{\omega})^2}} \sin [\omega t - \arctan (\frac{2\xi \tilde{\omega}}{1-\tilde{\omega}^2})]$
稳态响应特性
- $\tilde{\omega} \rightarrow 0$: $\mu \rightarrow 1$, $\varphi \rightarrow 0$, $x_0 \rightarrow \frac{F_0}{k}$
- $\tilde{\omega} \rightarrow 1$: $\mu \rightarrow \frac{1}{2 \xi}$, $\varphi \rightarrow \frac{\pi}{2}$, $x_0 \rightarrow \frac{F_0}{c\omega} = \frac{F_0}{2k\xi} = \frac{F_0}{c \omega}$
- $\tilde{\omega} \rightarrow \infty$: $\mu \rightarrow 0$, $\varphi \rightarrow \pi$, $x_0 \rightarrow \frac{F_0}{k \tilde{\omega}^2} = \frac{F_0}{m \omega^2}$
频率和阻尼:
- 受迫峰值频率: $\tilde{\omega}_{peak} = \sqrt{1 - 2 \xi^2}$
- 对比有阻尼的频率: $\omega_n = \sqrt{\frac{k}{J}}$
振幅:
- 受迫振动峰值: $\mu_{max} = \frac{1}{2\xi \sqrt{1-\xi^2}}$
- 对比小阻尼 $\xi$ : $\mu_{max} \approx \frac{1}{2\xi}$
$\omega_{peak} \leq \omega_d \leq \omega_n$
其他特性:
- 相位特性: $\varphi = \arctan \frac{c \omega}{k - m \omega^2}$
- Q 因子 (品质因子) $Q = \mu \frac{m \omega_n}{c} = \frac{1}{c\omega_n} = \frac{1}{2\xi}$
- $E = \int_0^T F_0 \dot{x} dt = \pi c \omega x_0^2$
- 半功率带宽: $\Delta \omega = (\omega_2 - \omega_1)$ 共振峰值点处
评论
评论插件加载失败
正在加载评论插件